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Abstract

We study the family of power transformations proposed by Box

and Cox (1964) when the choice of tt' power parameter X is restricted

to a finite set fl " The two cases in which obvious answers obtain

are when the true parameter X is an element of f0R and when A is

"far" from n We rtudy the case il which X is ,'close" to F
R 0

finding that the resulting methods can be very different from un-

restricted maxiim in liklihood and that inference depends on the design,

the values of the regrs;ion paranitrs, and the distance of X to
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I.I Lroduc t i on

Box and Cox (1964) tte, ed the power fanily of transformations,

wherein for sowlle tuunknown A

Y.xi + CIE "i + C i=l N

hlere the design ,rctr; Xi = i2 ip) p-I)

the r . are indepc.ndent and identically distributed with nican zero,
I

variance one and di ntribution F , and

y = (y )/ A 0

=loy A= .

They studied both maximuii likelihood and Bayes inference when F is

the normal di stribution. There is now a substantial literature on

tie problem, an incowplete list of which includes Andrews (1971),

Atkinson (1973), Hiinkley (1975), Bickel and Doksum (19FO, denoted B-D),

Carroll (1980), nid Carroll and Ruppert (1980, denoted C-R).

B-D devr-loptd an asytpq otic theory for estimation. If the normal

theory MLE is F when A is known and S* - 8(X) when X is

unknown and estimi:ted by A , they ompte the asymptotic distributions

of N 1/2(a - 6)/( and N 1/2(03 - 0)/a as N*, a - . These

distributions arc different, with the latter having a covariance

matrix at least as large and often very much larger than that of the

former; the estimates X and 8 are highly variable and highly

correlated in general. This suggests that there is a large "cost" due

to es' imaLing the power parameter A . Unfortunately, these results

(and independent Monte-Carlo work by Carroll (1980)) suggest that

unconditional infrence conceuning 8 can be very difficult for,

except in certain balanced designs, inference without taking

into account the variability of A will be incorrect while 0* is

itself too variable to be much hell. A theory for conditional inference

might prove useftl.

It is relevant to note that when S-0 and o1l are known. the

curvature (Efron (1975)) for A at A-0 is y . 10.67; fron suggests
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C-R study the prediction problem in the sense of estimating

the conditional median of Y given a design point x ; this is

inference in the original scale of tihe data. Their results are much

moYe encouraging; while there is a cost due to estimating A , it

is generally noL sev.re.. For example, if (So I . P- ),

the cost avraged over the distribution of the design is

(1+1,) -  (asymptotically as N + and a - 0).

We arc concerned VwiLh the following point which has been raised

concerning the applicability of the B-D and C-R theories. In practice,

one may be uncomfortabl using an estimate such as i = .037, then

the much more common log scale (A=O) is "just as good". Thus it

is reasonable to restrict the estimate of X to a finite set f)R

and to study the consequences of such a decision. Asymptotically,

as N -)- but. X and 1R stay fixed, one has the trivial results

that if X C Q R one is almost always in the right scale so there

are no difficulties, while if At ft R bias dominates and no useful

results are obtainable.

In Table I we present the results of a Monte-Carlo study for

estimating the conditional median of Y given x . The model is

simple linear regression based on a uniform design with 80"5, B=2

and

N1 N
(1.2) N i x.i x. L I

t 2

The errors were normally distributed with mean 0 and variance o 2

K and there were 500 replirations of the experiment. The restricted

power set was nR 0, 1/2, ± I} , and we made decisions in this

set on the basis of the likelihood. For a given A , our estimator is

(I+ X ) 0)
(1.3) 

0

exp( x B) (A o)

The numbers listed in the Table I are the "relative mean square

errors (MSE)". i.e., the mean square error of (I.3) divided by the

MSE when A is known. We list results for the origen x0 (1 o) and
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when x is n randuly chosen number of the design ; the latter is0

in effect an av.ei.rage, relat.ive MSE over the distribution of the design.

In Table I w, see that the restricted estimator (RE) dominates

the MIE when AX0 (hence X C S1R) , whi le the ILE dominates when

A { u . In this latter case note that increasing N or decreasing a

results in improved performance of the MIE relative to the RE.

In Tablc 2 we repeat the above experiment with the changes

P o=7. 01=4 . The slightly worse behavior of the MIE relative to the

X-known case is expected from the C-R theory. Note here that the

change in parameter values causes the RE to be much worse than the

MLE if A R * Also, the effect of changing N nr o is

highlighted.

From the Monte-Carlo, we see that the performance of the RE

relative to the MJ.E depends on A, N, a and 0 . One purpose of

the rest of this paper is to propose and investigate a simple

theory which gives a somewhat more systematic understanding of this

performance. More generally, we also investigate the question of

the feasibility of constructing procedures for which the choice

of X is restricted but which also give performance comparable

to the KLE.
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Tale 1

1 l. MS.E bhviio of"* t lie HLI.I . Wl 3~: re .it i we to the. A-knoijn

st til'te of tile c mllt imi td; .n of Y I;ivon x . lere
0

Q 0, _ 1/2, I I} 4, a.,I F1 .2

()RIYN AVERAGE
(x = (0 3)) (x random member of design)0 0

Rat io
N a A MI.. RE (11i .- ) MILE RE RATIO

20 3 0 1.17 1.05 1.11 1.07 1.01 1.06

20 1/2 1.28 1.18 1.08 1.17 1.01 1.16

40 I 1.13 1.00 1.13 .08 1.00 •1.08

40 1/2 0 1.22 3.00 1.22 1.16 1.00 1.16

20 I 1/8 1.13 1.26 1.12 1.07 1.15 1.07

20 3/2 3.?rl 1.43 1.14 1.13 1.24 1.10

4(n I 1.3.) 1.29 1.15 1.03 3.10 1.07

40 1/2 1/8 1.25 1.53 1.22 1.05 3.24 1.18

20 I 3/4 1.12 1.17 3.O4 1.06 1.10 1.04

20 1/2 I.24 1.34 3.08 3.12 1.24 1.1

40 1 1.10 3.29 1.17 3.04 1.10 3.06

40 1/2 1/4 1.23 1.52 1.24 1.06 1.14 1.08

4
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rabl v. 2

The M.E bhakvio' of tIc HLE and IREC relaLive to the A-known
est ima te of the condi t i onal median of Y given x . Here

0

R  {O, ±1/, , i I 7 and 1 = 4

OR1CEN AVERAGE
(x = (0 I)) (x random member of design)

Ratio
N A A MLE RlE (hligh/L.uw) MLE RE RATIO

20 1 0 1.34 1.00 1.34 1.25 1.00 1.25

20 1/2 1.43 1.00 1.43 1.27 1.00 1.27

40 I .23 1.00 1.23 1.32 1.00 1.32

40 1/2 0 1.37 1.00 1.37 1.27 1.00 1.27

20 1 1/8 1.25 1.72 1.38 1.15 1.61 1.40

20 1/2 1.37 2.24 1.64 1.18 2.30 1.95

40 1.24 1.80 1.45 1.04 1.59 1.53

40 1/2 1/8 1.38 2.47 1.79 1.07 2.33 2.18

$

20 1 1/4 1.24 1.65 1.33 1.13 1.49 1.32

20 1/2 1.36 2.52 3.85 1.16 2.19 1.89

40 I 3.22 2.11 1.73 1.05 1.42 1.35

40 1/2 1/4 1.36 3.41 2.51 1.09 2.20 2.02
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2. A large sample theory

Any reasonable theory must have , "close" to fi for large

sample sizes. We choo:;e to do this by lotting the cardinality of

P P increase with increasing sample size N and by letting A - XN

converge to a fixd elemcnt of U R . For ease of calculation we

focus on the import;ant special case that the log scale is "almost"

correct, i.e., f1 always contains zero and

1/2A = bo/N

Of course, when 1 = 0 the data truely have a log-normal distribution.

Let X and ' denote the restricted and 1L estimates of A
R M

let P or 03* be the estimate of P having chosen the power

X R or X , and let

f(A, x 0) ( + A x 0 )h/X (A 4 0)

= exp (x ) (AC o) ,0

whLich is the conditinnional median of Y given x ,with estimate (1.2).o

We assume the errors are normally distributed. Letting e - (I o ... o),

we as;sume

x. e= I (there is an intercept)

Then, for any value of b , when A is known the limit MSE is

(2.2) MSE(X known) = Ix o12 exp(2 x0 0)

For fixed a the computations are very difficult, so we will

follow the lead of Hickel and Doksum and consider only the case that

o - r n , where r - r(N) -. 0 is a known sequence; it simplifies

notation to nake the convention n * I

hL
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We are now in a po; i Lion to defiln( the re';trictcd estimate

AR of A , which we t;&c Iby convention eto Satisfy IAR1 ! I

Let V - (dk) be a finite or countably infinite subset of the

extended real lille with d 0 , d - d

Define intervals midway between these points:

Bk [(dk-1 +dk)/ 2 , (dk +d k + ) /2

Our restricted estimate AR satisfies JARI < I and maximizes

the likelihood oiver the admissible set with N x R/r C D

A:,ymptotically, the procedure becomes

Choose N /2R R/I - dk if NI/2AM/r E Bk and IA, i -< I

If not possible, choose R = ±1 on the basis of the

likeli bood.

The resulting estimate of P is and the estimate of the
conditional median of Y given x is f( R,Rx o R

The above procedure is asymptotically the same as a restricted

maximum likelihood method and is quite intuitive as it choses the

point in V closest to N1/2A MIr Note also that as N increases,

the tnumber of possible choices for scale also increases, as

desired. Make the definitions:

-1 N 2
b qN = N1  

l "t. x. - q

a, = [x q' - (x ]12

ecq (-T 2/2 ..- T2 /2)

N Ix N

eN (,/4)f,-' Y' 4 - jq 121 e e 0

Theorem. Using the B- asymptotics, the limit distribution of the

restricted estimator of the conditional median



( ) x -P f(X b/N I xr

is givLn by

(2.2) exp(:l,) LX X ! Z + a 1k (C - 1 2 + k )

where Z I and Z,) are indepeiident stanolard normal random variables.

The proof is in the appendix.

Thle The o remIn :J1, W tha t lie eS Li mat of the cond i t i ona I med ian

of Y given x lb:;ed on a restricted choice of X is not

n, ecessarily asympt it i( al 1y normally distributed.

Example e . Suppocse that for any sample size we restrict our choice

of XR to a fixed e;('t, say

0 (1 0, :4 112, ± I)

In this case we eventually have AR 0 so that ( (0, } and

(2.3) MSE (fixed finite :;et)

- ex,(2 x0 3) F 02+ b2a 12]

In simple linear regression with a symmetric design and fourth moment

p satisfying (1.2), we find that at the origen xo= (I ), a = /4 and

e (l4-1)/4 . In this case, while (2.3) does not serve as a

very good method for predicting the individual values in Tables I

and 2, it does, however, lead to the following qualitative conclusions,

all of which are s;atisfied by the simulations:

(i) Changing the value of N from 20 to 40 while fixing

n R and A basically, increase b by a factor of ri.

Hence, larger values of N will result in a worse

performance lor the RE when X A S1

(ii) Changing o from I to 1/2 itncreases b by a factor

of 2 and should result in worse performance for the RE.

kJ.
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(iii) CIan, i,,.g I' f1o1 2 to 4 icrcises fie term f, by

a factor of sitxti, Surh i lar'c' chai e ,hotild Cl ,Oe

much pi'o r:;t I rforniance ini Tabe 2.

(iv) Tile iincr,:n ,c in (iii) above should make the chan.ges in the RE

when (iik ch.n-,c,s N or o much 11oreC dramatic in Table 2 than in

Table I.

E--ap 1 e # 2.. The theory includes the h by choosing V dense.

In tL1is ease we g;et

(2 .
4 a) MSE (i, of ,)

-4 xp(2 , L ) xo 2  + at2  /C1

In the simple lineir rej'.res!non, at the origen this becomes

(2.41)) exp(2f,) il (P4-1)hi

Note that (2.4h) is indh'pndent of thc value of b

F xampl e*3. An interc:t in example in which the number of possible

values of AR  increases with N occurs when D = fall integers)

It is not too utiiearotiblc to suspect that this restricted estimate

will be at least cownarabe to the MLE, perhaps somewhat better

when b=O and hence X -: 2R ' but not too much worse when b = 1/2

and x 11 .R In this case

(2.5) MSE (restricted procedure)

+ exp(2x e) 1x o2

2eo I)  (k-b)2 e P{e 1 2Z+b E Bko

.ne only important difference between (2.4a) and (2.5) is the term

Z (k--by fe Z +b c
k
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It Table 3 we co!,pac, the valu,.s of (2.41,) and (2.5) for the uniform

simlple linvear (re.i on de:sig of tihe lt i ntirohtltion with 1, 1.79;

all comparisons ale at the origen x ( o).
0

Tabl-e 3

Comparison of MS', for a simple linceal regression design with moments

II 123 =0, 112 4 . 1.79, )o 0 =  (1 0)

mSl, !.') MSE (RE) MSE (RE)
b S (A known) MSI: (X known) MSE (HLE)

0 .5 2.27 2.37 3.04

0 2.0 2.27 2.59 1.14

0 4.0 2.27 1.03 .45

1/2 1.5 2.27 2.37 1.04

1/2 2.0 2.27 2.61 1.15

1/2 4.0 2.27 129.42 57.01

The result, are soiiicwhat surprising. First note that the

case b-O corresponds to situations il which X truely belongs

to the set fQR " The restricted estimate does not always outperform

the MLE, although it does for large B! . What is even more inter-

estLing is the case b= /2 , which is one of the simplest cases
in which A is not in the set flR although it is quite close.

hlere we see that the restricted procedure can perform very badly

indeed.

Tables 1-3 and the Theorem thus suggest that if the number of

poqsible choices' of scale is only on the order of NI/2 , the per-

forwance of the resulting estimates will differ from estimates based

on the MLF of A , in some cases being better but in others being

very witch worse. If one has no prior belief or evidence that only

a finite number of valties of A are possible, but rather in

estimating the conditional median of Y given x one wants to

make only "reasonable" choices of X while retaining MLE-type

behaivior, the zuimlr of pos.,ible choices of A will have to be
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Apptndi ix

We will usc coutij.uity techniqtues (1aijek and Sidak (1978)). Let

L be the lg-likeli hood whon b-O and let T,2 be the log-likelihood

for fixed b *0 . .dowhaL detailed calculations show that as

N , 4 0, under the distribution L with X0 ,

2 N 4 -1/2) N 2(A.1) - (1.I 2-11) .N + (bN ' ) i /2 + o (i)

I IP

TIi s shows th.tt t1 C it; h0 ) 0 is contiguous to the case b= 0

P',f of tie Thle.rel: Wht.1n A - b - 0 it follows by a Taylor expansion

i I k th:at as N o 0

:N - N I  (XR : R) f(X=O,s)] ex, (-xo)

-1/2 ' 9 /2 ̂
N x C. + a N / a + o (1)

0- 1'i R p

Al;o, B-D) show that when A - 0

(A.3) 2e N k o (- N-xiq')ci + 0 (1)

It is easy to rhock that the r.h.s. of (A.3) is asymptotically independent

of Oh fir:t term on the r.h.s. of (A.2). We now use the definition of

AR and the convention a - r(N)n r(N) to obtain that when X 0

as N - and o -0 0
N

(A.4) SN N-/2N 1/2 E Bk) + ()
N ~ ~ i= XE. + a1  d dk(N A /a o1

We are now in a position to use Theorem 7.2 of Roussas (1972, page 38).

In his notation,

I/2 N 2

TN = N- (. X.C q xc. T. )

(A.5) r - E TN TN

h a (0 0 -b/2)



One can show thati the terms in (A.5) satisfy the conditions of Roussas'
1/2Theorem 7.2 so that when X - baN , as N - and a -O, TN is

asymiptotically normally distributed with mean rh and covariance r.

Because of (A.3), this means that N 1/2 t /a and the first term on the

r.h.s. of (A.2) are, when X - baN- 1/ 2 , jointly asymptotically normally

distributed with mtcan:; (h -bxoq/2), variances (col, llxo
2 ) and zero

covariance. From this we obtain that (2.1) is asymptotically distributed

with the same distribution as

lix oiZ - ba +a F dkl(eo 1/2Z 2 h+b C Bk)
k

where Z and Z2 are as in the Theorem. This completes the proof.

"w't D

.4


